Reference Library

Holistic Hangover Recovery, Rooted in the Gut-Liver Axis

Our formulation is built on over three decades of microbiome and nutritional research, targeting the core biological systems disrupted by alcohol. Scientifically studied probiotics and prebiotics work synergistically to improve alcohol metabolism, reduce acetaldehyde levels, and reduce alcohol-induced gut barrier damage. Potent bioactives like curcumin and dihydromyricetin accelerate detoxification and protect liver cells from oxidative stress, while citrus-derived flavonoids help neutralize inflammation-driving free radicals. Together, these components help the body metabolize alcohol more efficiently, calm systemic inflammation, and restore cognitive clarity—helping you recover faster and feel better, naturally.

Key Formulations

Proprietary Probiotics + Prebiotics Formula

Targeted Antioxidant Support

Directions for Use

01 | Take 1 Before You Drink

Chew one Multi Fuel tablet before your first drink.

02 | Take 2 for a Big Night

Double up for extra support when the night’s going big.

03 | Share with Friends

Because recovery is better together.

04 | Wake Up Ready

Recover faster and wake up ready to take on your day.

References

  1. Paton, A. (2005). Alcohol in the body. BMJ : British Medical Journal, 330(7482), 85. https://doi.org/10.1136/bmj.330.7482.85
  2. Study finds correlation between oral microbiome, alcohol metabolism, and hangover severity. News. https://www.news-medical.net/news/20230704/Study-finds-correlation-between-oral-microbiome-alcohol-metabolism-and-hangover-severity.aspx
  3. Pohl, K., Moodley, P., & Dhanda, A. D. (2021). Alcohol’s Impact on the Gut and Liver. Nutrients, 13(9), 3170. https://doi.org/10.3390/nu13093170
  4. Jew, M. H., & Hsu, C. L. (2023). Alcohol, the gut microbiome, and liver disease. Journal of Gastroenterology and Hepatology, 38(8), 1205-1210. https://doi.org/10.1111/jgh.16199
  5. Xie, Z., Zhang, X., Zhao, M., Huo, L., Huang, M., Li, D., Zhang, S., Cheng, X., Gu, H., Zhang, C., Zhan, C., Wang, F., Shang, C., & Cao, P. (2022). The gut-to-brain axis for toxin-induced defensive responses. Cell185(23), 4298–4316.e21. https://doi.org/10.1016/j.cell.2022.10.001
  6. H. Turner, B. R., Jenkinson, P. I., Huttman, M., & Mullish, B. H. (2024). Inflammation, oxidative stress and gut microbiome perturbation: A narrative review of mechanisms and treatment of the alcohol hangover. Alcohol: Clinical and Experimental Research, 48(8), 1451-1465. https://doi.org/10.1111/acer.15396
  7. Mackus, M., Loo, A. J. V., Garssen, J., Kraneveld, A. D., Scholey, A., & Verster, J. C. (2020). The Role of Alcohol Metabolism in the Pathology of Alcohol Hangover. Journal of clinical medicine9(11), 3421. https://doi.org/10.3390/jcm9113421
  8. Jakubczyk, K., Janda, K., Kaczmarczyk, M., Łoniewski, I., & Marlicz, W. (2020). Gut Biofactory—Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients, 12(11), 3369. https://doi.org/10.3390/nu12113369
  9. Raasveld, S. J., Hogewoning, A., Bosma, E. R., Bouwmeester, N. H., Lukkes, M., Knipping, K., Mackus, M., Kraneveld, A. D., Brookhuis, K. A., Garssen, J., Scholey, A., & Verster, J. C. (2021). Immune Responses after Heavy Alcohol Consumption: Cytokine Concentrations in Hangover-Sensitive and Hangover-Resistant Drinkers. Healthcare, 9(4), 395. https://doi.org/10.3390/healthcare9040395
  10. Mackus, M., Lantman, S., Kraneveld, A. D., Brookhuis, K. A., Garssen, J., Scholey, A., & Verster, J. C. (2018). Susceptibility to Alcohol Hangovers: The Association with Self-Reported Immune Status. International Journal of Environmental Research and Public Health, 15(6), 1286. https://doi.org/10.3390/ijerph15061286
  11. H. Turner, B. R., Jenkinson, P. I., Huttman, M., & Mullish, B. H. (2024). Inflammation, oxidative stress and gut microbiome perturbation: A narrative review of mechanisms and treatment of the alcohol hangover. Alcohol: Clinical and Experimental Research, 48(8), 1451-1465. https://doi.org/10.1111/acer.15396
  12. Mackus, M., Kwon, O., Krishnakumar, I. M., Garssen, J., Kraneveld, A. D., Scholey, A., & Verster, J. C. (2020). The Inflammatory Response to Alcohol Consumption and Its Role in the Pathology of Alcohol Hangover. Journal of Clinical Medicine, 9(7), 2081. https://doi.org/10.3390/jcm9072081
  13. Forsyth, C. B., Voigt, R. M., & Keshavarzian, A. (2013). Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biology, 3, 40-46. https://doi.org/10.1016/j.redox.2014.10.002
  14. Shukla, S., & Hsu, C. L. (2024). Alcohol Use Disorder and the Gut–Brain Axis: A Narrative Review of the Role of Gut Microbiota and Implications for Treatment. Microorganisms, 13(1), 67. https://doi.org/10.3390/microorganisms13010067
  15. Hillemacher, T., Bachmann, O., Kahl, K. G., & Frieling, H. (2018). Alcohol, microbiome, and their effect on psychiatric disorders. Progress in neuro-psychopharmacology & biological psychiatry85, 105–115. https://doi.org/10.1016/j.pnpbp.2018.04.015
  16. Lee, H., Lee, G., Hoang, T., Kim, S. W., Kang, C. G., Jo, J. H., Chung, M. J., Min, K., & Chae, H. (2022). Turmeric extract (Curcuma longa L.) regulates hepatic toxicity in a single ethanol binge rat model. Heliyon, 8(9), e10737. https://doi.org/10.1016/j.heliyon.2022.e10737
  17. Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Design, Development and Therapy, 15, 4503. https://doi.org/10.2147/DDDT.S327378
  18. Khayatan, D., Razavi, S. M., Arab, Z. N., Hosseini, Y., Niknejad, A., Momtaz, S., Abdolghaffari, A. H., Sathyapalan, T., Jamialahmadi, T., Kesharwani, P., & Sahebkar, A. (2024). Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Molecular and cellular biochemistry479(3), 693–705. https://doi.org/10.1007/s11010-023-04757-5
  19. Silva, J., Yu, X., Moradian, R., Folk, C., Spatz, M. H., Kim, P., Bhatti, A. A., Davies, D. L., & Liang, J. (2020). Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcoholism, Clinical and Experimental Research, 44(5), 1046. https://doi.org/10.1111/acer.14326
  20. Liu, D., Mao, Y., Ding, L., & Zeng, A. (2019). Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends in Food Science & Technology, 91, 586. https://doi.org/10.1016/j.tifs.2019.07.038
  21. Wei, C., Chen, X., Chen, D., Yu, B., Zheng, P., He, J., Chen, H., Yan, H., Luo, Y., & Huang, Z. (2022). Dihydromyricetin Enhances Intestinal Antioxidant Capacity of Growing-Finishing Pigs by Activating ERK/Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel, Switzerland)11(4), 704. https://doi.org/10.3390/antiox11040704
  22. Microbiome Post. (2022). Probiotic supplement reduces alcohol absorption in small intestine. https://microbiomepost.com/probiotic-supplement-reduces-alcohol-absorption-in-small-intestine
  23. Jung, S., Hwang, J., Park, E., Lee, S., Chung, Y., Chung, M., Lim, S., Lim, T., Ha, Y., Park, B., & Chae, S. (2021). Regulation of Alcohol and Acetaldehyde Metabolism by a Mixture of Lactobacillus and Bifidobacterium Species in Human. Nutrients, 13(6), 1875. https://doi.org/10.3390/nu13061875
  24. Kwon, J.E., Hong, W., Jeon, H. et al. Suppression of P2X4 and P2X7 by Lactobacillus rhamnosus vitaP1: effects on hangover symptoms. AMB Expr 14, 30 (2024). https://doi.org/10.1186/s13568-024-01685-5
  25. Varesi, A., Campagnoli, L. I. M., Chirumbolo, S., Candiano, B., Carrara, A., Ricevuti, G., Esposito, C., & Pascale, A. (2023). The brain-gut-microbiota interplay in depression: A key to design innovative therapeutic approaches. Pharmacological Research, 192, 106799. https://doi.org/10.1016/j.phrs.2023.106799
  26. McFarlin, B. K., Henning, A. L., Bowman, E. M., Gary, M. A., & Carbajal, K. M. (2017). Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World journal of gastrointestinal pathophysiology8(3), 117–126. https://doi.org/10.4291/wjgp.v8.i3.117
  27. Liu, Z. Z., Liu, T., Zhang, Z. T., & Fan, Y. R. (2024). Bacillus coagulans regulates gut microbiota and ameliorates the alcoholic-associated liver disease in mice. Frontiers in Microbiology, 15, 1337185. https://doi.org/10.3389/fmicb.2024.1337185
  28. Mahalak, K. K., Firrman, J., Bobokalonov, J., Narrowe, A. B., Bittinger, K., Daniel, S., Tanes, C., Mattei, L. M., Zeng, B., Soares, J. W., Kobori, M., S Lemons, J. M., Tomasula, P. M., & Liu, L. (2022). Persistence of the Probiotic Lacticaseibacillus rhamnosus Strain GG (LGG) in an In Vitro Model of the Gut Microbiome. International Journal of Molecular Sciences, 23(21), 12973. https://doi.org/10.3390/ijms232112973
  29. Amadieu, C., Coste, V., Neyrinck, A. M., Thijssen, V., Leyrolle, Q., Bindels, L. B., Piessevaux, H., Stärkel, P., Delzenne, N. M., & Leclercq, S. (2021). Restoring an adequate dietary fiber intake by inulin supplementation: A pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes, 14(1), 2007042. https://doi.org/10.1080/19490976.2021.2007042
  30. Amadieu, C., Coste, V., Neyrinck, A. M., Thijssen, V., Leyrolle, Q., Bindels, L. B., Piessevaux, H., Stärkel, P., Delzenne, N. M., & Leclercq, S. (2021). Restoring an adequate dietary fiber intake by inulin supplementation: A pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes, 14(1), 2007042. https://doi.org/10.1080/19490976.2021.2007042
  31. Duysburgh, C., Velumani, D., Garg, V., Cheong, J. W. Y., & Marzorati, M. (2024). Combined Supplementation of Inulin and Bacillus coagulans Lactospore Demonstrates Synbiotic Potential in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) Model. Journal of dietary supplements21(6), 737–755. https://doi.org/10.1080/19390211.2024.2380262
  32. Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2019). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64, 103643. https://doi.org/10.1016/j.jff.2019.103643
  33. Gupta, A. K., & Maity, C. (2021). Efficacy and safety of Bacillus coagulans LBSC in irritable bowel syndrome: A prospective, interventional, randomized, double-blind, placebo-controlled clinical study [CONSORT Compliant]. Medicine, 100(3), e23641. https://doi.org/10.1097/MD.0000000000023641
  34. Munir, H., Yaqoob, S., Awan, K. A., Imtiaz, A., Naveed, H., Ahmad, N., Naeem, M., Sultan, W., & Ma, Y. (2023). Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods, 13(11), 1681. https://doi.org/10.3390/foods13111681
  35. Liew SS, Ho WY, Yeap SK, Sharifudin SAB. 2018. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ 6:e5331 https://doi.org/10.7717/peerj.5331
  36. Oboh, G., Ademosun, A.O. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J Food Sci Technol 49, 729–736 (2012). https://doi.org/10.1007/s13197-010-0222-y
  37. van de Loo, A. J. A. E., Mackus, M., Kwon, O., Krishnakumar, I. M., Garssen, J., Kraneveld, A. D., Scholey, A., & Verster, J. C. (2020). The Inflammatory Response to Alcohol Consumption and Its Role in the Pathology of Alcohol Hangover. Journal of clinical medicine9(7), 2081. https://doi.org/10.3390/jcm9072081
  38. Merlo, A., Mackus, M., Van de Loo, A. J., Van Neer, R. H., Vermeulen, S. A., Thijssen, S. S., Knipping, K., Bruce, G., Garssen, J., & Verster, J. C. (2023). An evening of alcohol consumption negatively impacts next-day immune fitness in both hangover-sensitive drinkers and hangover-resistant drinkers. Addictive Behaviors, 145, 107776. https://doi.org/10.1016/j.addbeh.2023.107776
  39. Anand, S.K., Ahmad, M.H., Sahu, M.R. et al. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 43, 1885–1904 (2023). https://doi.org/10.1007/s10571-022-01308-2
  40. Silva, J., Yu, X., Moradian, R., Folk, C., Spatz, M. H., Kim, P., Bhatti, A. A., Davies, D. L., & Liang, J. (2020). Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcoholism, Clinical and Experimental Research, 44(5), 1046. https://doi.org/10.1111/acer.14326
  41. Scazzocchio, B., & Minghetti, L. (2020). Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients, 12(9), 2499. https://doi.org/10.3390/nu12092499
  42. Chen, Z., Chu, H., Chyau, C., Chu, C., & Duh, P. (2012). Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chemistry, 135(4), 2119-2127. https://doi.org/10.1016/j.foodchem.2012.07.041
  43. Li, J., Shan, Y., Wu, X., Miao, H., & Zhao, Y. (2024). Gut microbiota regulates oxidative stress and inflammation: A double-edged sword in renal fibrosis. Cellular and Molecular Life Sciences: CMLS, 81(1), 480. https://doi.org/10.1007/s00018-024-05532-5